По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.mtk.nt-rt.ru || эл. почта: tpq@nt-rt.ru

Комплекс учета энергоносителей

• Измеряемая среда:

газ, пар или жидкость

- Условный проход расходомеров:
 - Dy (DN) от 15 до 300
- Динамический диапазон по расходу:
 - 1:30
- Давление среды:
 - до 25 МПа
- Температура среды:
 - -40...427°C
- Пределы относительной погрешности измерений количества газа, приведенного к нормальным условиям:
 - ±1,5%
- Пределы относительной погрешности измерений массы пара (тепловой энергии):
 - ±2,0 (3,0)%
- Пределы относительной погрешности измерений количества воды (тепловой энергии):
 - ±1,0 (2,0)%
- Интервал между поверками

3 года

Новое решение от для повышения энергетической эффективности пред-приятий:

- контроль потребления ресурсов и режима работы основного технологического оборудования;
- организация учета (включая коммерческий) различных видов энергоресурсов.

Отличительные особенности комплекса:

- измерение расхода сред при помощи хорошо зарекомендовавших себя в эксплуатации вихревых расходомеров Rosemount 8800 или новой модели Rosemount 8600;
- большой выбор моделей датчиков давления и температуры для различных применений;
- датчики температуры с естественным и унифицированным выходными сигналами;
- применение наиболее популярных вычислителей (контроллер расхода Floboss 107, ТЭКОН-19, тепловычислители СПТ, корректоры СПГ).

ОБЩИЕ СВЕДЕНИЯ

Комплекс 490 предназначен для организации учета потребления ресурсов основным технологическим оборудованием, коммерческого или технологического учета различных газов и их смесей, энергоносителей (вода, насыщенный или перегретый пар) на предприятиях в любых отраслях промышленности: энергетической, металлургической, нефтегазовой, химической и нефтехимической, целлюлознобумажной, пищевой и т.д.

Комплекс проводит измерение параметров среды (объемный расход, температура, абсолютное или избыточное давление), рассчитывает массовый расход, массу энергоносителя и количество тепловой энергии; объемный расход газов, приведенный к условиям согласно ГОСТ 2939 (температура 20°С, давление 101,325 кПа).

Комплекс имеет следующие исполнения:

- СЧВ счетчик тепла для закрытых водяных систем теплоснабжения;
- СЧП- счетчик тепла для паровых систем;
- СЧГ счетчик газа.

В состав комплекса входят измерительные преобразователи (далее ИП) объемного расхода, перепада давления, абсолютного и избыточного давления, температуры (см. табл.1).

Подробные технические характеристики и контроллеры расхода на ИП приведены в соответствующих разделах настоящего каталога и каталогов "Датчики давления", "Датчики температуры" и "Средства коммуникации. Функциональная аппаратура".

LIIVIA			Таблица
	СЧВ	СЧП	СЧГ
ИП расхода			
Rosemount 8600	•	•	•
Rosemount 8800		•	•
ИП давления			
55-ДИ (ДА)	•	•	•
75-ДИ (ДА)	•	•	•
150-ДИ (ДА)	•	•	•
Rosemount 3051		•	•
ИП температуры			
КТСП 206	•		
ТСП 286		•	•
ТСП 200	•	•	•
ТСП 2000	•	•	•
ТСП 2700		•	•
Контроллеры			
TЭКОH-19	•	•	•
СПГ 761.2			•
СПГ 762.2			•
СПГ 763.2			•
СПТ 961.2	•	•	
Floboss 107			•

В исполнениях СЧВ и СЧП применяются ИП, соответствующие обязательным требованиям нормативнойтехнической документации (НТД), предъявляемые к счетчикам тепла и их составным частям: ГОСТ Р 51649, ГОСТ 51522.1, ГОСТ Р ЕН 1434-1, ГОСТ Р 8.592, ГОСТ Р 52932, ГОСТ Р 8.642, "Правила учета тепловой энергии и теплоносителя П-683".

ДИАПАЗОНЫ ИЗМЕРЯЕМЫХ ПАРАМЕТРОВ

Таблина 2

						Таблица 2
Среда	Темпер	атура, °С	Абсолютное д	цавление, МПа		ый расход х условиях)
	Tmin	Tmax	Pmin	Pmax	Qmin	Qmax
Вода	0	200	0,1	5,0	0,4 м³/ч	2 000 м³/ч
Пар перегретый	100	400	0,1	15,0	1,41 м³/ч	13 956 м³/ч
Пар насыщенный	100	300	0,1	5,0	5,8 кг/ч	355 968 кг/ч
Природный газ	-50	100	0,1	12,0	1,41 м³/ч	20 000 м³/ч
Сжатый воздух	-50	200	0,1	25,0	1,41м³/ч	20 000 м ³ /ч
Азот	-50	150	0,1	10,0	1,41 м³/ч	20 000 м³/ч
Аргон	-50	150	0,1	10,0	1,41 м³/ч	20 000 м ³ /ч
Кислород	-50	100	0,1	15,0	1,41 м³/ч	20 000 м³/ч
Ацетилен	-50	150	0,1	10,0	1,41 м³/ч	20 000 м³/ч
Аммиак	-50	150	0,1	10,0	1,41 м³/ч	20 000 м³/ч
Углекислый газ	-3	70	0,1	5,0	1,41 м³/ч	20 000 м³/ч

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПЛЕКСА

Пределы допускаемого значения основной относительной погрешности измерительного канала (далее ИК) расхода для воды, газообразных сред и пара при рабочих условиях приведены в табл.3.

Таблица 3

ИП расхода	Основная относительная погрешность при измерении расхода воды, %	Основная относительная погрешность при измерении расхода газообразных сред и пара в рабочих условиях, %
Расходомер вихревой Rosemount 8800	±0,75	±1,1
Расходомер вихревой Rosemount 8600D	±0,85	±1,1

Комплексы исполнений СЧП, СЧГ обеспечивают измерение температуры энергоносителя по ИК температуры в диапазоне температур от -50 до 400°C с предельной допускаемой абсолютной погрешностью, равной:

- $\pm 1,0^{\circ}C$ для ИП температуры с естественным выходным сигналом классом допуска A и $\pm 2,35^{\circ}C$ для ИП температуры с естественным выходным сигналом классом допуска B;
- $\pm 0.85^{\circ}$ С-для ИПтемпературы стоковым выходным сигналом с основной приведенной погрешностью $\pm 0.15\%$ и $\pm 1.25^{\circ}$ С для ИП с основной приведенной погрешностью $\pm 0.25\%$.

Комплексы исполнений СЧП, СЧГ обеспечивают по ИК температуры с ИП температуры, встроенного в расходомер, измерение температуры энергоносителя в диапазоне температур от -50 до 250°C с предельной абсолютной погрешностью, равной $\pm 1,3°$ C.

Комплексы исполнения СЧВ обеспечивают по ИК разности температуры с ИП в виде комплекта термометров сопротивления, измерение разности температур энергоносителя в пределах от 5 до 145°С с предельной допускаемой абсолютной погрешностью, равной:

 ± 0.08 °C - для разности температур от 5 до 20°C, включительно,

для ИП с комплектом термометров сопротивления класса A и $\pm 0,15^{\circ}$ C для ИП с комплектом термометров сопротивления класса B:

 $\pm 0,2^{\circ}C$ - для разности температур выше 20 и до 145°С, включительно, для ИПскомплектом термометров сопротивления класса A и $\pm 0,4^{\circ}C$ для ИП с комплектом термометров сопротивления класса B.

Комплексы исполнений СЧП, СЧГ обеспечивают измерение температуры энергоносителя для ИК температуры с ИП температуры с видом взрывозащиты «искробезопасная электрическаяцепь», подключенного через барьер искрозащиты с нормируемой погрешностью передачи токовых сигналов, в диапазоне температур от минус 50 до 400°С с предельной допускаемой абсолютной погрешностью, равной:

- $\pm 1,0\,^{\circ}$ С для ИП температуры с основной приведенной погрешностью $\pm 0,15\%;$
- $\pm 1,3^{\circ}$ С для ИП с основной приведенной погрешностью $\pm 0,25\%$.

Комплексы обеспечивают по ИК давления измерение избыточного давления энергоносителя в диапазоне от 0 до 25 МПа (0-25000 кПа) или абсолютного давления энергоносителя в диапазоне от 0,1 до 25 МПа (100-25000 кПа) с пределами допускаемой основной относительной погрешности, равными:

Таблица 4

Основная приведенная погрешность ИП давления, ±%	Допускаемые пределы шкалы давлений	Предел основной относительной погрешности ИК давления, ±%
0,075	от Pmin=0,1∙Pmax до Pmax	1,6
0,1	от Pmin=0,1∙Pmax до Pmax	1,75
0,15	Pmin=0,15∙Pmax до Pmax	1,7
0,20	Pmin=0,15∙Pmax до Pmax	1,7
от 0,25 до 0,5	Pmin=0,3∙Pmax до Pmax	1,8

Комплексы исполнения СЧВ обеспечивают измерение массы (объема) воды в диапазоне расходов от 0,04-Qmaxдо Qmaxспредельной относительной погрешностью, равной ±1,0% и измерение тепловой энергии воды с предельными относительными погрешностями, равными:

- ±3% для разности температур в подающем и обратном трубопроводах от 5 до 20 °C, включительно;
- $\pm 2\%$ для разности температур в подающем и обратном трубопроводах свыше 20 и до 145°С, включительно; не более значений, вычисленных по формуле

 $\pm (3+4\cdot\Delta tmin/\Delta tB+0,02\cdot Qmax/Qmin), \%,$

Qmax - верхний предел диапазона измерения расхода, $m^3/4$ Qmin=0,04·Qmax - нижний предел диапазона измерения расхода, $m^3/4$

∆tmin = +5°C, наименьшее значение разности температур в подающем и обратном трубопроводах

 $\Delta t {\bf B}$ - разность температур в подающем и обратном трубопроводах.

Комплексы исполнения СЧП обеспечивают измерение массы пара в диапазоне расходов от 0,1-Qmax

до Qmax с предельной относительной погрешностью $\pm 2\%$ и измерение тепловой энергии пара в диапазоне температур от 90 до 350°C с предельной относительной погрешностью $\pm 3\%$.

Комплексы исполнения СЧГ обеспечивают измерение количества природного газа и других газов, приведенных к стандартным условиям, в соответствии с ГОСТ 30319.0, ГОСТ 30319.1, ГОСТ 30319.2, ГОСТ 30319.3, ГОСТ Р 8.740-2011 с погрешностями, равными:

- пределы допускаемой относительной погрешности, измерения приведенного к стандартным условиям количества природного и других газов, для диапазона измерения давления от Pmin до Pmax, температур от -50 до 200°С и расхода от Qmin до Qmax, соответствуют приведенным в табл.5;
- пределы допускаемой относительной погрешности, измерения приведенного к стандартным условиям количества природного и других газов, для ИП с видом взрывозащиты "искробезопасная электрическая цепь", подключенных через барьеры искрозащиты, для диапазона измерения давления от Pmin до Pmax, температуры от минус 50 до 200°С и расхода от Qmin до Qmax, соответствуют приведенным в табл.6.

Таблица 5

	Относительная погрешность ИК количества газа, ±%				
Тип контроллера	Приведенная погрешность, %, ИП давления				
	0,075	0,1	0,15/0,2/0,25	0,35/0,5	
ТЭКОН-19, СПГ 761.2, СПГ 762.2, СПГ 763.2	1,5	1,6	1,8	2,1	
FloBoss 107	1,7	1,8	1,9	2,1	

Таблица 6

	Относительная погрешность ИК количества газа, ±%				
Тип контроллера	Приведенная погрешность, %, ИП давления				
	0,075	0,1	0,15/0,2/0,25	0,35/0,5	
ТЭКОН-19, СПГ 761.2, СПГ 762.2, СПГ 763.2	1,8	1,9	2,0	2,1	
FloBoss 107	2,0	2,1	2,1	2,1	

УСЛОВИЯ ЭКСПЛУАТАЦИИ ФУНКЦИОНАЛЬНЫХ БЛОКОВ

Монтаж и электрические подключения функциональных блоков комплекса производятся в соответствии с указаниями по монтажу и схемами электрических подключений необходимых ИП и контроллеров (см. соответствующие разделы настоящего каталога, а так же каталогов "Датчики давления", "Датчики температуры").

Питание электрических цепей функциональных блоков

Таблица 7

Тип вычислителя	Питание	
ТЭКОН-19	внешний источник постоянного тока с напряжением от 18 до 30 В	
СПГ 761.2		
СПГ 762.2	промышленная однофазная сеть	
СПГ 763.2	переменного тока с напряжением от 160 до 280 В, частотой от 49 до 51 Гц	
СПТ 961.2	40 200 B, 10010101101 40 40 011 4	
Floboss 107	внешний источник постоянного тока с напряжением от 18 до 30 В	

Степень защиты от воздействия пыли и воды по

ГОСТ14254: контроллеры IP20/IP54;

ИП расхода и давления IP66;

ИП температуры IP65.

НАДЕЖНОСТЬ

Средняя наработка на отказ - не менее 25 000 ч. Средний срок службы - не менее 15 лет.

ПОВЕРКА

Интервал между поверками - 3 года.

Поверка комплекса производится поэлементно в соответствии с документом "Комплекс учета энергоносителей 490. Методика поверки 13.5294.000.00МП". Интервал между поверками для первичных ИП и контроллера комплекса - в соответствии с их нормативной документацией.

КОМПЛЕКТНОСТЬ ПОСТАВКИ

Таблица 8

Наименование	Количество, шт
Контроллер	1
Расходомер	До 2
Датчик давления	До 2
Датчик температуры	До 2
Барьеры искрозащиты	Определяется количеством ИП взрывозащищенного исполнения
Паспорт	1
Руководство по эксплуатации	1
Методика поверки	1
Комплект монтажных частей	До 2
Эксплуатационная документация на ИП и контроллер, входящие в комплекс	Поставляется в составе комплекта поставки ИП и контроллера

ПРИМЕР ЗАПИСИ ОБОЗНАЧЕНИЯ КОМПЛЕКСА 490 ПРИ ЗАКАЗЕ

490 - СЧВ - К1 - P86/X - 080/100 - Д1 - 1,6/1,0 - Т5 - 090/105 - Брх - КМЧ10/КМЧ201 2 3 4 5 6 7 8 9 10

- 1. Исполнение комплекса:
- **СЧВ** счетчик тепла для закрытых водяных систем теплоснабжения;
 - СЧП счетчик тепла для паровых систем теплоснабжения;
 - СЧГ счетчик газа.
- 2. Тип контроллера:
 - **К1**-контроллерТэкон-19(используетсявовсехисполнениях);
- **К2** контроллер СПТ 961.2 (используется в исполнениях СЧВ и СЧП);
 - **КЗ** контроллер СПГ 761.2 (используется в исп.СЧГ);
 - **К4** контроллер СПГ 762.2 (используется в исп.СЧГ);
 - **К5** контроллер СПГ 763.2 (используется в исп.СЧГ);
- **К6** контроллер FloBoss 107 (используется в исп.СЧГ). 3.Тип расходомера (максимально в комплексе может быть 2
- однотипных расходомера для двух трубопроводов):
 - **P88** вихревой расходомер Rosemount 8800;
- **P88T** расходомер вихревой Rosemount 8800D с встроенным датчиком температуры;
 - **Р86** расходомер вихревой Rosemount 8600;
- **P86T** расходомер вихревой Rosemount 8600D с встроенным датчиком температуры.
- 4. Условный проход расходомеров:
 - 080/100 при отсутствии 2-го расходомера ставится Х.
- 5. Тип датчиков давления:
 - **Д1** датчик давления 55 (ДИ/ДА);
 - **Д2** датчик давления 75 (ДИ/ДА);
 - **ДЗ** датчик давления 150 (ДИ/ДА); **Д4** датчик

давления Rosemount 3051 (ДИ/ДА);

при отсутствии датчика давления ставится Х.

- 6. Максимальное рабочее давление в трубопроводах (МПа):
 - **1,6/1,0** при отсутствии датчика давления в соответствующем трубопроводе ставится X.
- 7. Тип датчиков температуры:
 - **Т1** датчик температуры 200;
 - **Т2** датчик температуры 2000;
 - **Т3** датчик температуры 2700 (4-20 мA);
 - **Т4** датчик температуры 286 (4-20 мA);

- **Т5** комплект термопреобразователей сопротивления 206, 226 (только для исполнения комплекса СЧВ);
- **Т6** датчик температуры в составе расходомера.
- 8. Внутренний диаметр трубопроводов, мм:
 - 090/105 при отсутствии 2-го трубопровода ставится Х.
- 9. Наличие барьеров искрозащиты:
- **Брх** комплекс с барьерами искрозащиты (количество барьеров определяется количеством используемых ИП с токовым выходным сигналом 4-20 мА и видом взрывозащиты "искробезопасная электрическая цепь").
- 10. Комплект монтажных частей (КМЧ) для расходомеров:

КМЧ10/КМЧ20 - прокладки;

КМЧ11/КМЧ21 - прокладки, болты, гайки, шайбы;

КМЧ12-1(2,3)/КМЧ22-1(2,3) - ответные фланцы, прокладки, болты, гайки, шайбы;

КМЧ13-1(2,3)/КМЧ23-1(2,3)-прямые участки с фланцами, прокладки, болты, гайки, шайбы.

Примечания:

- 1. Индекс 1 в коде заказа КМЧ1х обозначает комплект монтажных частей для 1-го расходомера, индекс 2 (КМЧ2х) комплект монтажных частей для 2-го расходомера.
- 2. Материал ответных фланцев и прямых участков:

КМЧхх-1 - сталь 20;

КМЧхх-2 - сталь 09Г2С;

КМЧхх-3 - сталь 12Х18Н10Т.

- 3. Ответные фланцы входящие в КМЧ12/КМЧ22 соответствуют типоразмеру (условному проходу) расходомеров, входящих в состав комплекса, и типу уплотнительной поверхности фланцев расходомеров.
- 4. Комплект монтажных частей, включающий прямые участки, фланцы, прокладки, болты, гайки, шайбы поставляется по отдельному заказу. За дополнительной информацией обратитесь в Центр Поддержки Заказчика.
- 5. Барьеры искрозащиты поставляются по отдельному заказу. За дополнительной информацией обратитесь в Центр Поддержки Заказчика.
- 6. При отсутствии КМЧ или барьеров искрозащиты соответствующая позиция не заполняется.