По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.mtk.nt-rt.ru || эл. почта: tpq@nt-rt.ru

Технологический измеритель-регулятор 961

Код ОКП 4220

- Универсальный аналоговый вход
- Высокая точность измерений
- Эргономичная визуализация результатов измерений
- Встроенный блок питания для датчика с унифицированным выходным сигналом (УВС)
- Высокое быстродействие (до 0,2 с)
- Различные комбинации выходов: релейные, оптосимисторные, токовый
- Электромагнитная совместимость по ГОСТ Р 51317.4.5-99
- Детектирование обрыва сенсора
- Возможность конфигурирования с помощью клавиатуры или ПК
- Легкость интеграции в АСУТП (интерфейс RS485 + Modbus RTU)
- Внесен в Госреестр средств измерений под №34810-07, сертификат №27907
- TY 4210-015-13428679-2007

Семейство технологических измерителейрегуляторов 961 предназначено для измерения, визуализации, контроля и регулирования технологических параметров в различных отраслях промышленности.

В зависимости от конфигурации приборы выполняют функции:

- измерения и визуализации значения технологического параметра;
- устройства сигнализации;
- нормирующего преобразователя выходных сигналов ТП и TC;
- питания датчиков на токовой петле;
- регулятора температуры или других технологических параметров по алгоритмам: 2-х, 3-позиционному, П, ПИ, ПИД;
- передачи измерительной информации в систему управления по цифровому каналу RS485 (ModBus RTU + OPC Server).

УСТРОЙСТВО И РАБОТА

Первичный преобразователь температуры или датчик с унифицированным выходным сигналом (УВС) подключается к универсальному аналоговому входу регулятора. Информация о входном сигнале обрабатывается процессором (линеаризация и сдвиг для ТП и ТС, масштабирование и корнеизвлечение для УВС). Затем производится цифровая фильтрация сигнала. Полученное значение выводится на светодиодное табло прибора.

Микроконтроллер, считав информацию с измерительного входа, в зависимости от выбранного алгоритма работы, выдает сигналы на выходные устройства:

- реле сигнализации (Сигн.);
- управляющие реле или оптосимисторы (Вых.1, Вых.2);
- источник выходного тока (0-5, 0-20, 4-20 мА).

Реле сигнализации перекидного типа, что позволяет использовать нормально закрытые (H3) или нормально открытые (H0) контакты. Реле управления имеет (H0) контакты.

Гальванически изолированный интерфейс RS485 служит как для конфигурирования прибора с ПК, так и для постоянного подключения к АСУТП. Если опция "RS485" не выбрана, то вместо нее на заднюю панель прибора выведен технологический интерфейс, позволяющий с помощью кабель-адаптера RS232, поставляемого по отдельному заказу (один на несколько приборов) подключать измеритель-регулятор к порту USB ПК для удаленного конфигурирования.

Модели измерителя-регулятора

Таблица 1

						таолица т
-961	Дискрет.	Встроенный	RS485	Токовый	Управление	Описание
Конфигурации	выходы	БП		выход		
3P	3P				Поз. (ПИД¹))	Измеритель регулятор с 2 реле управления и 1 реле сигнализации, автономный ²⁾
3P-T	3P			1	Поз., П (ПИД)	Универсальный измеритель регулятор с 2 реле управления, 1 реле сигнализации и токовым выходом; может применяться как нормирующий преобразователь сигналов ТС/ТП в ток; автономный
3Р-БП	3P	1			Поз. (ПИД)	Универсальный измеритель-регулятор с 2 реле управления, 1 реле сигнализации, БП ³⁾ , автономный
3Р-БП-RS485	3P	1	1		Поз. (ПИД)	Универсальный измеритель-регулятор с 2 реле управления, 1 реле сигнализации, БП, поддержка сети ModBus ⁴⁾
1Р2С-БП	1P2C	1			Поз. (ПИД)	Универсальный измеритель-регулятор с 2 оптосимисторами управления, 1 реле сигнализации, БП, автономный
1Р2С-БП-RS485	1P2C	1	1		Поз. (ПИД)	Универсальный измеритель-регулятор с 2 оптосимисторами управления, 1 реле сигнализации, БП, поддержка сети ModBus
3Р-БП-RS485-Т-ПИД	3P	1	1	1	ПИД	Полная конфигурация

- 1) Опционально ПИД-регулирование может присутствовать в любой конфигурации.
- $^{2)}$ Автономный работа без поддержки сети, интерфейс с ПК RS232 только для конфигурирования.
- 3) БП наличие встроенного блока питания 24 В.
- $^{4)}$ Поддержка сети $\overset{\cdot}{\mathsf{ModBus}}$ интегрируемый в АСУТП через сеть RS485 (ModBus).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ

Аналоговый вход измерителя-регулятора - универсальный и может быть свободно переконфигурирован потребителем. Входные сигналы, диапазоны измерений и пределы допускаемой основной погрешности приведены в табл.2, 3, 4.

Измерение входных сигналов термоэлектрических преобразователей

Таблица 2

НСХ (тип ТП) по ГОСТ Р 8.585-2001	Диапазон, С	Пределы допускаемой основной погрешности в диапазоне температур от 15 до 35°C, ±С *	Единица младшего разряда индикации, °C	
A-1 (TBP)	0400	4,2-0,004·T		
	4002200	1,7+0,0024·T		
A-2 (TBP)	0300	4,4-0,006·T		
	3001800	2,1+0,0017·T		
A-3 (TBP)	0300	4,1-0,005·T		
	3001800	2,1+0,0017·T		
Ј (ТЖК)	-2000	0,8-0,013·T		
	01000	0,8+0,0005·T		
R (ТПП 13)	-49200	9,6-0,026·T		
	2001767	4,5		
Ѕ (ТПП 10)	-49200	9-0,02·T		
	2001700	5-0,0003·T		
В (ТПР)	5001000	11,7-0,007·T	0,1 до 1000°C;	
	10001820	5,3-0,0006·T	1 свыше 1000°C	
Е (ТХКн)	-2000	0,75-0,012·T		
	01000	0,75+0,0004·T		
N (THH)	-2000	1,5-0,02·T		
	01300	1,5+0,0003·T		
K (TXA)	-2000	1-0,015·T		
	01300	1+0,0009·T		
M (TMK)	-200100	0,4-0,022·T		
	-100100	1,3-0,005·T		
T (TMK)	-2000	1,1-0,016·T		
	0400	1,1-0,0005·T		
L (TXK)	-2000	0,7-0,012·T		
	0790	0,7+0,0003·T		

^{*} Погрешность измерения температуры без учета погрешности измерения температуры холодного спая. Пределы допускаемой погрешности канала компенсации температуры холодного спая ±1°C. Компенсация температуры холодного спая автоматическая.

Измерение входных сигналов термопреобразователей сопротивления

Таблица 3

Тип ТС	НСХ (W100) по ГОСТ 6651-94	Диапазон, °С	Пределы допускаемой основной погрешности в диапазоне температур от 15 до 35°C, ±С*	Единица младшего разряда индикатора, °C
Платиновые (ТСП)	50П (W100=1.3910)	-200600	0,8+0,001*T	
	100Π (W100=1.3910)		0,5+0,0008*T	
	Pt50 (W100=1.3850)		0,8+0,001*T	
	Pt100 (W100=1.3850)		0,5+0,0008*T	0.1
Медные (ТСМ)	50M (W100=1.4280)	-200200	0,8+0,0005*T	0,1
	100M (W100=1.4280)	-200200	0,5+0,0005*T	
	Cu50 (W100=1.4260)	-50200	0,8+0,0006*T	
	Cu100 (W100=1.4260)	-50200	0,5+0,0006*T	

^{*} Полная погрешность при измерении температуры с помощью термометра сопротивления - предел допускаемой основной погрешности + 1 ед. младшего разряда индикатора.

Измерение электрических сигналов в виде силы, напряжения постоянного тока и сопротивления постоянному току

Таблица 4

Функция	Диапазон	Пределы допускаемой основной погрешности в диапазоне температур от 15 до 35°C	Дополнительная погрешность на каждые 10°C в диапазоне температур от -10 до 15°C и от 35 до 60°C
Измерение силы постоянного тока	±(0-24) мА	0,06%ИВ* + 0,008 мА	0,01 мА
Измерение напряжения	±(0-110) мВ	0,06%ИВ* + 0,04 мВ	0,05 мВ
постоянного тока	±(0-1,1) B	0,06%ИВ* + 0,4 мВ	0,5 мВ
Измерение сопротивления постоянному току	(0-325) Ом	0,06%ИВ* + 0,13 Ом	0,16 Ом

^{*} ИВ - значение измеряемой величины.

- Дополнительная погрешность в диапазоне температур от -10 до 15°С и от 35 до 60°С, при измерении выходных сигналов ТП и ТС, не превышает предельную основную погрешность на каждые 10°С
- Время отклика на 90%-е изменение сигнала не превышает 0,2 с для токового входа
- Детектирование обрыва подключенной термопары или термопреобразователя сопротивления

Дискретные выходы. Сигнализация и регулирование

Реле сигнализации - перекидного типа, присутствует во всех исполнениях. Может использоваться и для регулирования. Дополнительно, в зависимости от конфигурации, имеются 2 управляющих реле или 2 оптосимистора. Коммутируемые напряжения и токи:

- реле сигнализации:

активная нагрузка $\sim\!250$ В / $=\!30$ В / 3 А реактивная нагрузка $\sim\!250$ В / $=\!30$ В / 1 А (COS ϕ = 0,75...0,8)

- управляющее реле:

активная нагрузка ~250 B / =30 B / 7 A

реактивная нагрузка ~250 B / =30 B / 4 A ($COS\phi = 0.75...0.8$)

- оптосимистор с детектором перехода напряжения через ноль

допускаемое напряжение до ~265 В максимальный допускаемый ток ~1 А.

Имеется режим тестирование реле для периодической поверки работоспособности.

На лицевой панели светодиодная индикация состояния каждого выхода.

Логика управления каждым выходом определяется одной (SP) или двумя уставками (SP.H, SP.L) и значением гистерезиса срабатывания (H).

На рис.2 представлены режимы работы дискретных выходов при использовании для сигнализации и позиционного управления.

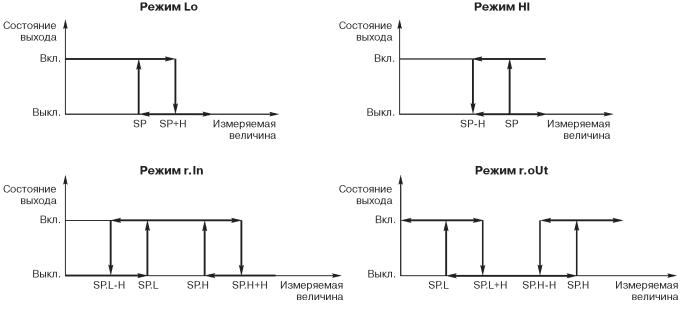


Рис.2. Режимы работы дискретных выходов.

Для выхода сигнализации при наличии релейных или оптосимисторных выходов доступен режим таймера (см.рис.3).

Токовый выход

Токовый выход по ГОСТ 26.011-80 (исполнение Т):

- гальваническая изоляция от остальных цепей прибора;
- пределы генерации тока -0,5...22 мА;
- не требует внешнего источника питания;
- сопротивление нагрузки не более 2500 Ом для сигнала 0-5 мА и не более 600 Ом для сигнала 0-20 мА;
- предел допускаемой основной погрешности генерации тока $\pm (0.06\% \cdot I + 8 \text{ мкA})$ в диапазоне температур 15...35°C, где I генерируемое значение тока;
- дополнительная погрешность на каждые 10°C вне диапазона температур 15...35°C не более предела основной погрешности.

Токовый выход может работать в режиме:

- ретранслятора измеряемой величины (рис.3a);
- пропорционального (П-) регулятора (рис.3б).

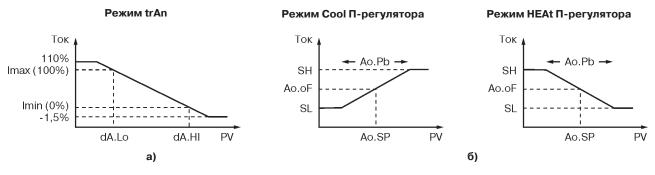


Рис. 3. Характеристики токового выхода.

Цифровые интерфейсы и прикладное программное обеспечение

Регулятор в исполнении "RS485" обеспечивает поддержку протокола MODBUS RTU в сети на основе физического уровня RS485. Для встраивания в АСУТП пользователям предоставляется:

- описание ModBus-команд, поддерживаемых прибором;
- OPC-сервер, обеспечивающий доступ к прибору из SCADA-систем.

Поставляется также сервисное программное обеспечение (ПО) для персонального компьютера (ПК), позволяющее с помощью интерфейса RS485 дистанционно конфигурировать прибор с ПК.

В отсутствии опции "RS485", но при заказе кабель-адаптера RS232 (один на несколько измерителей-регуляторов) в комплекте с последним также поставляется ПО для конфигурирования прибора с ПК.

ОТОБРАЖЕНИЕ ИНФОРМАЦИИ

Светодиодное табло состоит из:

- 4-х разрядного цифрового индикатора с высотой символов 20 мм, что удовлетворяет требованиям эргономики по ГОСТ 29.05.002-82 при дальности наблюдения до 7 м;
- двухцветного шкального индикатора (bargraph), имитирующего отрезок числовой оси, для пропорционального отображения значения измеряемой величины относительно выбранных границ.

НАСТРОЙКА И КОНФИГУРИРОВАНИЕ

Настройку и конфигурирование регулятора можно осуществить:

- вручную с помощью кнопок регулятора. Имеется режим "быстрого" меню для оперативной настройки;
- удаленно с ПК программой конфигурирования через интерфейс RS485, либо, если опция "RS485" отсутствует, через технологический интерфейс, подключаемый к порту RS232 компьютера. В последнем случае необходим дополнительный специальный кабель-адаптер, поставляемый по отдельному заказу (один на несколько приборов).

ВСТРОЕННЫЙ БЛОК ПИТАНИЯ ДАТЧИКОВ С УНИФИЦИРОВАННЫМ ТОКОВЫМ СИГНАЛОМ

Встроенный блок питания, предназначенный для питания преобразователей измерительных по ГОСТ 13384 (исполнение "БП"), имеет следующие характеристики:

- выходное напряжение 24 $B\pm1\%$;
- рабочий выходной ток до 30 мА;
- нестабильность выходного напряжения в рабочем диапазоне температур $\pm 1\%$ от номинала;
- ток срабатывания защиты (50±10) мА.

ЭЛЕКТРИЧЕСКАЯ ИЗОЛЯЦИЯ ЦЕПЕЙ

Электрическая изоляция при температуре окружающей среды (23±5)°С и относительной влажности 80% в течение 1 минуты должна выдерживать переменное напряжение частотой от 45 до 65 Гц со среднеквадратичным значением:

- 1500 В между выводом заземления и остальными цепями;
- 1500 В между клеммами питания переменного тока и остальными цепями;
- 1500 В между дискретным выходом и остальными цепями
- 500 В между закороченными контактами аналогового входа, встроенного источника питания (в исполнениях "БП") и закороченными контактами сетевого интерфейса (в исполнениях "RS485"), и закороченными контактами аналогового выхода (в исполнениях "Т") в различных комбинациях.

ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ

Помехоэмиссия измерителя-регулятора соответствует ГОСТ Р 51317.6.4-99 (МЭК $6\ 1000-6.4-96$).

Устойчивость к электромагнитным помехам - по ГОСТ 51522-99.

MACCA

Масса регулятора составляет не более 0,5 кг.

ЭНЕРГОПОТРЕБЛЕНИЕ

Мощность, потребляемая от сети 220 В, не превышает 10 Вт.

НАДЕЖНОСТЬ

Средняя наработка на отказ: не менее 50000 ч. Средний срок службы: не менее 10 лет.

ПОВЕРКА

Поверка производится в соответствии с методикой, приведенной в руководстве по эксплуатации 3066.000 РЭ. Межповерочный интервал - 2 года.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Регулятор устойчив к воздействию температуры окружающей среды от -10 до 60°C.

Степень защиты от пыли и влаги по ГОСТ 14254:

- ІР54 для передней панели;
- IP20 для остальных стенок корпуса.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок - 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев с момента изготовления.

КОМПЛЕКТ ПОСТАВКИ

Измеритель-регулятор 961 Руководство	1 шт.
по эксплуатации 3066.000 РЭ Паспорт	1 экз.
Диск с ПО:	1 экз.
-для опции RS485	1 шт.

-для опции кабель-адаптер USB-RS232 1 шт. Кабель-адаптер USB-RS232 1 на несколько (по отдельному заказу) приборов

ПРИМЕР ЗАПИСИ ПРИ ЗАКАЗЕ

- 1. Тип измерителя-регулятора.
- 2. Количество и типы дискретных выходов:

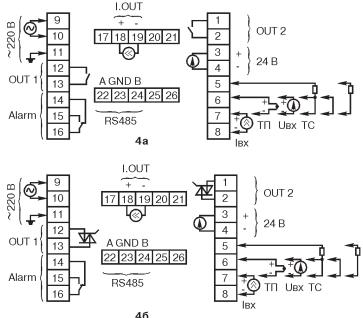
3Р - три реле; в т.ч. одно реле сигнализации (тип контактов: переключающий), два реле управляющих (тип контактов: замыкающий);

1Р2С - одно реле сигнализации, тип контактов: переключающий, два оптосимистора.

- 3. **БП** наличие встроенного блока питания +24 В для датчиков с унифицированным выходным сигналом (при заказе).
- 4. **RS485** наличие гальванически изолированного интерфейса RS485 для постоянного подключения к внешней системе управления или ПК (опция);

поле пропущено - технологическая связь с ПК может осуществляться через RS232 с помощью специального кабель-адаптера, который при заказе указывается отдельной строкой. Один кабель-адаптер может использоваться для нескольких приборов.

5. **Т** - наличие унифицированного токового выхода 0-20, 0-5 или 4-20 мА (конфигурируется), при отсутствии - поле пропустить;


6. Доступность функции регулирования:

поле пропущено - 2-х, 3-х позиционное или П-регулирование;

пид - дополнительно возможно ПИД-регулирование.

7. ГП - госповерка.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДАТЧИКОВ

22 23 24 25 26 Тх GND Rx +5 B Связь с ПК через кабель-адаптер RS232

Назначение клемм в исполнениях **3P** (рис.4a), в исполнениях **1P2C** (рис.4б):

1, 2 - выход 2 (реле в исполнении **3P**, оптосимистор в исполнении **1P2C**);

3, 4 - встроенный блок питания 24 В в исполнении БП;

5, 6, 7, 8 - универсальный аналоговый вход;

9, 10 - сеть питания переменного тока 220 В, 50 Гц;

11 - контакт рабочего заземления;

12, 13 - выход 1 (реле в исполнении **3P**, оптосимистор в исполнении **1P2C**);

14, 15, 16 - релейный выход сигнализации;

18, 19 - аналоговый токовый выход в исполнении Т;

22, 23, 24 - сетевой интерфейс RS485 в исполнении **RS485**. Назначение клемм 22, 23, 24, 25 (рис.4в), при отсутствии опции **RS485** - связь с ПК.

Рис.4. Расположение и назначение клемм прибора.